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Abstract. The pure Glauber (harmonic oscillator) coherent states provide a very useful 
basis for many purposes. They are complete in the sense that an arbitrary state in the 
Hilbert space may be expanded in terms of them. Furthermore, the well known P rep- 
resentation provides a diagonal expansion of an arbitrary operator in the Hilbert space in  
terms of the projection operators onto the coherent states. We study here the extensions 
of these results to the analogous mixed states which describe comparable harmonic oscillator 
systems in thermodynamic equilibrium at non-zero temperatures. Our results are given for 
the general density operator which describes the mixed squeezed coherent states of the 
displaced and squeezed harmonic oscillator. We show how these squeezed coherent mixed 
states similarly provide a very convenient complete description of a Hilbert space. In 
particular we show how the usual P and Q representations of operators in terms of pure 
states may be extended to finite temperatures with the corresponding mixed states, and 
various relations between them are demonstrated. The question of the existence of the 
generalised P representation for an arbitrary operator is, further examined and some 
pertinent theorems are proven. We a!so show how our results relate to the Glauber-Lachs 
formalism in quantum optics for mixtures of coherent and incoherent radiation. Particular 
attention is focused both on the interplay between the quantum mechanical and thermody- 
namical uncertainties and on the entropy associated with such mixed states. 

1. Introduction 

The important role played by coherent states in a wide variety of problems in physics 
is by now widely appreciated (e.g. Klauder and Skagerstam 1985). Apart from the 
original Glauber and atomic coherent states, many other ‘generalised coherent states’ 
have subsequently beeen constructed in connection with specific applications and 
developments. In this particular work we are concerned with a generalisation suited 
to finite-temperature phenomena or to problems concerned with a superposition of 
coherent and chaotic states. 

The usual coherent states discussed in the literature are pure states. By contrast, 
a quantum mechanical system in thermal equilibrium at finite temperatures is not in 
a pure state, but may be represented by a mixed state described by a density matrix 
(Fano 1957, Zubarev 1974, Harriman 1978, 1986). Consequently, our motivation is to 
study the coherence properties of mixed states. As a first step we consider here the 
mixed states described by the density matrices appropriate to systems of displaced 
and squeezed harmonic oscillators. These provide a much studied model system, and 
one of very considerable importance in various applications in the fields of quantum 
optics and quantum electronics. In our own case, they will serve as a particularly 
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illustrative example of our main aim which is to study and use these mixed states in 
the role of a 'basis' in the system Hilbert space. Clearly the term 'basis' is used here 
in a generalised sense, because in its strict sense it is a collection of pure states. A 
mixed state is, loosely, a set of pure states with a probability attached to each of them. 
It is usually described in terms of a density operator. One of our main conclusions is 
that the mixed coherent states of the harmonic oscillator provide a set of building 
blocks in the Hilbert space, comparable to the usual (pure state) basis vectors. In  
particular, we show how all bounded operators can be completely represented in terms 
of them. 

In order to set the scene and  to introduce the key concepts central to our motivation, 
let us first briefly consider various bases of pure states in a Hilbert space. We recall 
some of their properties, and express them in a language suitable for our later 
generalisations. In particular let us first compare and contrast conventional states and 
coherent states as bases. By conventional states, we refer here to the usual orthonormal 
eigenvectors that can be associated with any self-adjoint operator in the Hilbert space. 
A prime example is the orthonormal basis { In)}  associated with the number operator 
a'a, where U and a' are the usual annihilation and  creation operators of the linear 
harmonic oscillator, and which satisfy the basic commutation relation [a, a ' ]  = I. In 
this case it is instructive to compare the states In) with the corresponding standard (or 
Glauber) coherent states /A). In terms of the eigenstates In), 

u ' a J n ) =  nln) 1 n )  = ( n !) -"2( a ')"IO) (1) 

where 10) is the vacuum, a10) = 0 and the normalised standard coherent state /A)  has 
the form 

for all complex numbers A. It is easily seen to be an  eigenstate of the destruction 
operator 

alA) = AIA). ( 3 )  

It is of considerable interest for later purposes to compare the complete set of basis 
states In) with the overcomplete set IA), and with later generalisations in mind we 
make this comparison via the corresponding density operators I ,  In)(nl and 
I A  IA)(AI. In  the case of the orthogonal basis, the operators I ,  have three particularly 
important properties. In the first place, orthogonality immediately gives 

I n l m  = a m n 1 n  (4) 

which clearly includes the weaker condition, I' ,  = I , ,  namely that the operators I ,  are 
projection operators. Furthermore, the normalisation condition, Tr I,, = 1, readily 
yields the result 

( 5 )  

The second important relation is that the entropy associated with the density operator 
I,, is zero: 

Tr( I , , l m )  = a,,,, . 

S,  = -Tr( 1, In I,,) = 0. ( 6 )  
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The third property concerns the completeness of the basis. This is conventionally 
expressed by the relation 

1 In = I .  
n 

(7) 

In  turn, ( 7 )  implies that an arbitrary ket Ik) in the Hilbert space has the expansion 

Ik) = c LIk) = c ( n l W  (8) 
,l n 

while an arbitrary (linear) operator 0 in the space has the expansion 

e=  (ml@ln)lm)(nl. 
m, n 

(9) 

In this latter regard it is particularly important to realise that only the very special 
class of operators (0,) that commute with the number operator have the diagonal 
expansion 

(10) 

Let us now compare these three properties of the density operators In in the 
number-state basis with their counterparts for the density operators ZA in the coherent- 
state basis. In the first place the operators ZA are not orthogonal, as in (4), although 
they are still projection operators, 

0,  = E  ( n I @ , l n ) l n ) ( n l  =I I, Tr ( O J n ) .  
n n 

I ’ , = I A .  (11) 

Tr( ZAZs) = exp( - /A - BIZ) (12) 

&E -Tr(zA ln (13) 

It is easy to prove from (2) that the counterpart of (5) is now 

Tr Z’, = 1. 

In the second place, the entropy associated with 1, is again identically zero 

just as in (6) .  Finally, the completeness relation for the coherent states 

J$I.=I d2A = d( Re A) d(  Im A) 

is the counterpart of (7). Once again this implies that an arbitrary ket Ik) may be 
expressed as 

A very important difference that now arises from the overcompleteness of the basis is 
that an arbitrary (trace class) operator 0 may be given the diagonal expansion 

which is the so-called P representation of the operator 0. Questions concerning the 
existence and uniqueness of the P representation have been much discussed in the 
literature, both with respect to the harmonic oscillator coherent states considered here 
and with respect to other or more general coherent states. For example, in the case 
of finite-dimensional Hilbert spaces, such as those associated with the atomic or 
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spin-coherent states, the corresponding P representative may not be uniquely defined 
(Lieb 1973, Gilmore 1976). In practice, certain rather general smoothness conditions, 
such as being infinitely differentiable, often dictate the form in such cases. In the 
present case of the oscillator coherent states, with infinite-dimensional Hilbert spaces, 
the P representations exist most generally in the sense of generalised functions or 
Schwartz distributions. Mehta (1967) has shown that one form for the P representative 
is 

P ( A ;  0) =exp(lAI2) -(-BIQIB) exp(lB1’) exp(AB*-A*B) (17) 

with an obvious implicit assumption that the integral exists. For many operators 0 
the integrand will be such that P ( A ;  Q )  is a smooth function. However in many other 
cases, the derivation of (17) and  its interpretation must be within the framework of 
generalised function theory. We discuss such details more fully in 9 3. 

Now the above pure-state density matrices or projection operators play an extremely 
important role both in quantum mechanics (von Neumann 1955) and, more generally 
in mathematics, in the spectral theory of operators (Halmos 1958, Friedrichs 1973). 
Our main objective in the present work is to extend the treatment to the consideration 
of mixed states as a generalised basis in Hilbert space. The associated density operators 
p are clearly no longer projection operators and the counterparts of the relations 
expressed in (5), (6), (12) and  (13) will no longer hold. Indeed the corresponding 
relations Tr(p2) < 1 and S -Tr(p In p )  > 0 provide a measure of how much these 
states are mixed. Amongst other things we will give a generalised P representation 
appropriate to mixed states or to finite temperatures. We also show how our density 
operators are related to those considered in a rather different language in the particular 
field of quantum optics in order to study superpositions of coherent and chaotic states 
(Glauber 1963, Lachs 1965, Mollow and  Glauber 1967). The very wide use of the 
Glauber- Lachs formalism for various applications in quantum optics also leads us to 
believe that our own results should find wide applicability. 

It is by now well known that the original Glauber coherent states have been 
generalised to the so-called squeezed (or two-photon or paired) coherent states (Yuen 
1976, Caves 1981,1982, Walls 1983, Bishop and Vourdas 1986). The standard Glauber 
states are just the limiting case of zero squeezing. For the sake of generality, and  with 
future applications in mind, we present all of our results for the density operators and 
mixed states associated with the general displaced and squeezed harmonic oscillator. 
In § 2 we review the necessary properties of the displaced and squeezed harmonic 
oscillators and their coherent states, and in 0 3 consider the mixed states and density 
matrices appropriate to such systems in thermal equilibrium at a finite temperature. 
We conclude in § 4  with a discussion of our results and some remarks concerning 
possible extensions. 

5 d: 

2. The squeezed and displaced harmonic oscillator 

We consider the Hamiltonian Ho of the harmonic oscillator (in units mass M = 1 and 
h = l ) ,  

Ho = f6’+ fw’4’ = w (&, + +) 

a,,= (2w)-’I2(wq*+ip^) (18) 
a: = (2w)-’”(w4 -it). 
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We denote IO), as the vacuum state and 
no = aoa,: 

as the eigenstates of the number operator 
* +  

aolO)o=O a;a,ln),= nln),. (19) 

Ul ( A )  E exp( Aa; - A* a,) 

Introducing the unitary ‘displacement operator’, U , ( A ) ,  

(20) 

where A is an arbitrary complex parameter, it is simple to prove that its mode of action 
on the basic operators is given by 

Similarly, the unitarity of the operator U , ( A )  trivially yields that for any operator 
f ( a , ,  ab), we have 

Ui(A)f(ao, a b ) U ; ( A )  = f ( a ~ ,  a;) .  (22) 

The operator U , ( A )  thus defines a unitary isomorphism of the Hilbert space onto 
itself, for any choice of parameter A. To each state Is), corresponds the mapped state 
IS), = U,(A)Is),, and to each operator 0, = f ( a o ,  a;)  corresponds the mapped operator 
0, = U , ( A ) O o U : ( A )  = f ( a A ,  U: ) .  It is trivial to prove that, if Is), is an eigenstate of 
O 0 ,  then IS), is the corresponding eigenstate of OA.  

These general ideas may now be applied to the displaced harmonic oscillator. The 
original (undisplaced) Hamiltonian of (18) is mapped onto the Hamiltonian 

H A  3 u , ( A ) H , u ; ( A )  = O J ( U ; U ~  ++) = OJ(U;U ,  - A*u,- AU;+ I A ~ ’ + ; )  (23) 

which describes a displaced oscillator with respect to the original operators a,, a i .  
Its ground state, is given by 

This state is clearly a Glauber coherent state with respect to the original operators a,, 
U ; ,  as (24) shows. We also define the displaced number operators, h,, as 

u ~ ( A ) ~ , u : ( A ) = u ; u ~  ( 2 5 )  
whose eigenstates are clearly given by 

n*Aln)A = nln)A l n ) A  = Ul(A)ln)O (26) 
in terms of the states In)* defined in (19). 

1981, 1982, Walls 1983, Bishop and Vourdas 1986) defined as 
We now consider the unitary ‘squeezing operators’, U,(p, 8, A )  (Yuen 1976, Caves 

U,(p, 8, A )  = exp[ -ap exp(-ie)aA’+ip exp(ie)ai]  exp(iAa&) (27) 
where p, 8, A are real parameters, and p > O .  Their mode of action on the basic 
(displaced) operators is to generate the Bogoliubov transformations (Bishop and 
Vourdas 1986) 

aA,peA UZ(P, 8, A ) ~ A U ; ( ~ ,  8, A)=/-Lao+vU;-A 

~ k . , ~ , ,  ~ . ( p ,  e, A ) U ; U ; ( ~ ,  e, A )  = v * u , + ~ * u ; - A *  (28) 

/-L = exp( - iA  ) cosh ( fp )  v = exp[ - i ( A  + e)]  sinh( i p )  
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which leave the canonical commutation relations unchanged 

[aA;pHA 9 ak;pHA 1 = LaA 9 = I .  (29) 

In order to simplify the notation, we shall henceforth omit the indices p, 0, A in the 
case p = 0. The unitarity of the operators U ,  again immediately gives the counterpart 
of ( 2 2 )  as 

UAp,  8, A ) f ( a ~ ,  U h ,  8, A )  = f ( a ~ ; p ~ A ,  (30) 

As before for U , ,  each operator U z  defines a unitary isomorphism of the Hilbert space 
onto itself, with similar mappings of each state U,(p, 8, A ) ~ s ) ~ ,  and of 
each operator 0, + @A;,oA = Udp, 8, A)@A V b ,  8, A 1. 

In particular, the Hamiltonian for the squeezed and  displaced harmonic oscillator 
becomes 

1 ~ ) ~ ; ~ ~ ~  

HA;,,, = u~(P ,  8, A ) H A u S ( P ,  8, A )  = ~ ( a ? A ; , e A a A , p e A  +;I 
= W ( f o a ; a , + f , a ~ + f l a ; 2  +.f2ao+fTa; +”&) (31 )  

where the f coefficients are defined as 

fo = cosh p f, = f exp(i8) sinh p 

fi = -A* exp(-iA) cosh(ip) - A  exp[i(A + e ) ]  sinh($p) 

Its ground state is the ‘squeezed and  displaced vacuum’ 

( 3 2 )  
f3= IA12+{ cosh p. 

l o ) A , p H A  U2(p1 = UZ(p7 A )  Ul(A)\O)O 

= Ur(P, 8, A)lA)o= / A ;  p0A)o ( 3 3 )  

aA;oOAlO)A;pO,+ = O .  

The state lA; pBA), is a squeezed coherent state with respect to the original operators 
a,, a; .  Finally, we define the squeezed and  displaced number operator, n * A , ( , H d ,  

;A;pHh UZ(p, A)n*AUS(p, A )  (34) 

n*A;pei  I n )  A ; p m  = n I n )  A;pHA 

whose eigenstates are given as 

(35) 

With this background established, we turn our attention in the next section to the 

I ~ ) A . , # ~  I n ; p e A ) ~ =  U ~ P ,  8, A ) ( ~ ) A =  U d p ,  8, A)U,(A)(n)O.  

corresponding system at a finite temperature. 

3. Coherent density matrices 

We now consider the canonical equilibrium states of the squeezed and displaced 
oscillator at some non-zero temperature T. As usual, they are the mixed states described 
by the thermodynamic density operator p A i p B A  ( T ) ,  defined as 

PA;POA(~) z-’ exp(-pHA;pOA) z Tr eXp(-pHA;,,A) 
(36) 

p E (kBT)-I  Tr P A : ~ O A  ( T )  = 1 
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where k, is Boltzmann’s constant and H A ; p , A  is the Hamiltonian of ( 3 1 ) .  The thermo- 
dynamic average, (a), of an arbitrary operator 0 is defined in terms of the density 
operator as 

(0) = (@),;,,A = Tr[pA;pOA( T)@l* ( 3 7 )  

Using the results of 9 2, we may also write 

P A ; p B A ( T ) =  U2(p ,  e, A ) P A ( T ) U : ( p ,  e ,A)  

= U ~ ( P ,  6, A )  U,(A)po( T )  U : ( A )  U:(P, 6, A ( 3 8 )  

where the density operators pA( T )  and po( T )  are defined as in ( 3 6 )  but in terms of 
the respective Hamiltonians HA of ( 2 3 )  and Ho of ( 1 8 ) .  The density operators po( T ) ,  
pA( T )  and pA;,,h ( T )  thus correspond respectively to the original oscillator, the dis- 
placed oscillator and the displaced squeezed oscillator. It is clear that each of these 
density operators is Hermitian and positive definite. Our intention is now to prove 
various properties of the density operators p A ; p e A ,  which in particular will demonstrate 
how they may be viewed as a generalisation of the (pure) squeezed coherent states 
IA;pBA)o, and how they may be used as a ‘basis’ in the corresponding Hilbert space. 

3.1. Expansions of the density operator 

The simplest expansion of the density operator P A ; ~ ~ A  is clearly in terms of the projection 
operators Z,,(A; pBA) formed from its corresponding eigenstates = In; @ h ) A  of 
( 3 5 )  

We thus have the diagonal representation 

P A ; p O A ( T )  PoA) 
n 

( 4 0 )  
pn(T)  = [ 1  -exp(-Pw)I exp(-Pwn) 0 a p n < 1  C P n  = 1 .  

n 

Clearly the quantities p n ( T )  represent the probabilities of finding the system in the 
state In),,,,, . In the case of zero temperature, T + 0, we see pn + and ( 4 0 )  reduces 
to the pure squeezed and displaced ground state 

P A ; p B A ( T ) =  I A ;  p e A ) O O ( A ;  peAl ( 4 1 )  

in the notation of ( 3 3 ) .  
More generally, for T # 0, the density operator may be represented as a superposi- 

tion of the projection operators of ( 4 1 )  as already discussed in 9 1 .  This leads us to 
a second very important expansion for the density operator, namely its P representation 
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where (426) follows from (42a)  by using (33) and (38), and where the function 
P( A; pB( T ) )  is given from (17) as 

In order to evaluate (43), we first need to calculate the matrix elements of the density 
operator between Glauber coherent states. Using (24) and (38), we may write 

, ( A I ~ ~ ( ~ ) I ~ ) ~ = ~ ( O I U : ( A )  u 1 ( ~ ) p o ( ~ )  ~ ; ( ~ ) ~ , ( r ) l o ) ~ .  (44) 

Using (20) it is simple to prove the group relation: 

u: (B)  u,(r) = exp[+(rB* - r * ~ ) ]  u,(r - B ) .  

Also, (1) and (2) easily yield the relation 

exp(4ah,))A),  = exp[4)A\2()em)2 - 1)]1A e%. 

(45) 

(46) 

Use of (45) and (46) in (44) then readily gives 

o ( A I ~ s ( ~ ) l r ) o =  (1 -e-pw ) exp[(l -e-P")(B*T+A*B - IBI2)-flAI2-~lr/ '+A*r e-'"'] 

where we have used the overlap relation between coherent states 

(47) 

(48) 

which follows from (2). After some straightforward integration, (43) and (47) yield 
the final result 

P(A;  p s (  T ) )  =*(e'"' - 1) exp[-(e'" - 1)IA- BIZ]. (49) 

R A ;  P A T ) )  n W A  - 8) (50) 

o(BIA)o = exp(-$/A1* -flBI'+ AB*) 

The zero-temperature limit of (49) is clearly singular and it is easy to see that 

as required. 
It is of interest to enquire whether the more general squeezed density operator 

p 5 ; p e A  (7-1 also has a P representation in terms of the (unsqueezed) Glauber coherent 
state: 

as well as in (42) in terms of the squeezed coherent states. It is not difficult to show 
that in this case, however, the expression of Mehta (1967) given by (17) now diverges. 
We stress that this does not imply that the representation of (51) does not exist, but 
rather that it cannot be found by this method. The general question of the existence 
of the P representation is complicated (Klauder and Skagerstam 1985). Sudarshan 
(1963) seems to have been the first to investigate the universality of the diagonal 
representation for operators in the case of the standard coherent states. A rather 
general and particularly illuminating discussion has been given more recently by Yaff e 
(1982). 

The situation can be summarised as follows. The existence proofs, which enable 
us to assert that the diagonal representations of (16) can always be found, do  not 
guarantee that the weight factor P (A;  0) is a well behaved function. In general this 
is not the case and such P representatives must be interpreted in the sense of Schwartz 
distributions. 
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The construction of Mehta (1967) is, in the first instance, justified in its derivation 
only when the factor C-BlOlB) exp(lB1') is square integrable, and hence so also is 
P ( A ;  0 )  exp(-lAl'). More generally, in the case that (-BlOlB) exp(lB1') grows as a 
(finite-order) polynomial at  infinity, the Fourier integral can still be understood as a 
Schwartz tempered distribution-loosely speaking, combinations of Dirac delta func- 
tions and their (finite-order) derivatives. 

However, there are still other cases where the integrand in (17 )  grows exponentially 
as one or both of /Re  BI and IIm BI tend to infinity. The squeezed density operator 
pBipBA ( T )  is just such a case for all p # 0. In such cases the P representation now still 
exists as a (Schwartz) distribution, which is, however, no longer a tempered distribution. 
Klauder et a1 (1965) applied the techniques of distribution theory to this case. They 
showed that every operator in the trace class (namely, those whose trace exists in the 
sense of being finite and basis independent) is the weak limit of a sequence of operators, 
each of which admits a diagonal representation of the form of (16), with square- 
integrable P representatives. From a practical point of view, such limiting sequences 
are often not easy to use, and it is largely to take into account these difficulties that 
alternative generalised (off-diagonal) pure-state P representatives have been considered 
(e.g. Drummond and Gardiner 1980). From the formal mathematical point of view, 
however, we can summarise by saying that the P representative exists for an arbitrary 
bounded operator (of the trace class) as a Fourier transform of a distribution. Such 
distributions, whether tempered or not, may be defined as sequences of integrable 
functions or by linear maps. Both viewpoints have proven useful to the mathematician, 
but little practical use seems to have come from either of them in the present context. 

Since such P representatives for P B , ~ " A (  T )  in the case of squeezing are not central 
to our present purposes we make no attempt to pursue any alternative construction of 
the P representatives for an appropriate sequence of operators for this case and d o  
not discuss this topic further here. We shall however return to such considerations in 
0 3.4 where we generalise the concept of the P representation to mixed states. 

Instead, we turn to a third useful expansion for the density operator, in terms of 
the original number eigenstates In)o 

P B ; n m (  T ,  O(n/pB( T ) / m ) o  

which, as we have already remarked, cannot now be a diagonal expansion. Again, in 
order to avoid unnecessary complication we restrict ourselves to finding the matrix 
elements pB;nm( T )  for the unsqueezed density operator. These matrix elements can 
be evaluated directly from the previous representation of (42) and (49), although the 
resulting integrals are somewhat cumbersome. A simple method is to take matrix 
elements of the expansion of (52) between Glauber coherent states 

(53) 

where we have made use of ( 2 ) .  This result may now be compared directly with (47) 
to give 

dAlp,( T)/T),= 1 p B i n m ( T )  e~p[-flA(*-f)T(~](m!n!)-"~A*"T" 
m, n 

1 p s ; n m ( T ) ( m ! n ! ) - " Z A * n T "  
m, n 

= (1 -e-@") exp[-(l -e-P")I~12] 
xexp[( l  -e-P")(B*T+A*B)+e-P",4*T]. (54) 
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The necessary expansion of the last term in 
the generating functions for the associated 
Ryzhik 1965) 

X 

e-"( 1 + 2)" = L,"-"(x)z" 
n = O  

to prove rather easily the relation 

(54) may now be made by using one of 
Laguerre polynomials (Gradshteyn and 

e x p ( a , a , + a , r + a , r ) =  m,n C - ( a l r ) m  m! ( : ) " L r - n ( - r ' ) .  (56) 

Upon making the following substitutions into (56): 

B*T I A*B 
a z  = exp( -5pw)-  r = 2(B/  sinh(4pw) (57) 

IBI 
a,=exp(-$w)- 

IBI 
and inserting the resulting expression in (52), the desired result is obtained: 

psLnm( T )  = 7 (B*)m-n exp[-tpw(m+ n + 1)][2 sinh($o)]"-"+' (3 
x exp[-(1 -e-Pw)lBIZ]L::-"[-41B12 sinh2($w)]. (58) 

The Hermiticity of the density operator ps(  T ) ,  which implies that ps,",,,( T )  = p&,,,( T ) ,  
is not immediately apparent from (58) but may readily be checked using the relation 

Using the limiting relation L:(O) = 1, it is simple to show that in the special case 
B = 0, (58) reduces to 

poi",,, ( T )  = 6," (1 - e-OW ) e P w  (60) 
which is just the Planck distribution. Similarly by using the asymptotic form 

we can easily show that the zero-temperature limit of (58) is given by the correct form: 

p B i n m ( T )  ( n !  m!)-1'2B*mBn exp(-IB12) =o(nlB)oo(Blm)o. (62) 

Before proceeding we pause here to point out the connection between our density 
operators ps(  T )  and the Glauber-Lachs formalism in quantum optics for mixtures of 
incoherent (or, loosely, thermal) and coherent radiation. In this connection, it has 
been shown by Glauber (1963) how the density operator for an electromagnetic field 
can profitably be expanded in the P representation. Furthermore, Glauber showed 
that the P representation for a field, which is the superposition of two separate fields 
with individual P representations P , ( A )  and &',(A), is given by their convolution: 

In the case of a single w mode, the P representation for an oscillator of corresponding 
frequency in a coherent state IB), is clearly 

(64) Pl (A)  = rS"'(A- B ) .  
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Glauber (1963) has also shown that the P representation for the corresponding mode 
of a random incoherent field, with average number of photons i, is given by 

P,(A) = (ti-' exp(-IAI2/i). (65) 

Substitution of (64) and  (65) into (63) shows that the P representation for the mixed 
incoherent and coherent field is 

P ( A )  = (i)- '  exp(-IA-BI'/l) (66) 

which has been used in this form by Lachs (1965). 
In  our case of thermodynamic equilibrium for a system with a single mode w,  we 

have ii+(no)o in the notation of (37), which by the use of (40) reduces to the usual 
Planck distribution 

nT=(n , ) ,=Cnpn(  T )  = (ePw - - I ) - ' .  
n 

A comparison of our (49) with (66) and (67) then shows immediately how our pR(  T )  
can be used in the Glauber-Lachs formalism to represent, for a single-frequency ( w  ) 
mode, a superposition of a coherent field in state IB), with a corresponding thermal 
(incoherent) black-body radiation field at  temperature T. We also note that within the 
context of the amplification of electromagnetic fields, Mollow and Glauber (1967) 
were also led, during a discussion of a simple theoretical model of the parametric 
amplifier, to a relation similarly analogous to our representation of (58). 

3.2. Applications to statistical correlations 

The expansions of both (42) and (52) lead to useful expressions for the average values 
(O), = Tr[p,( T ) O ]  of an  arbitrary operator in a mixed state described by the density 
operator pe( T ) .  We find, respectively, 

Particularly interesting applications of (68) arise either when 0 is known in normal- 
ordered form or when it is a function of the number operator ais, only. In the former 
case, if 0 has the normal-ordered expansion 

o = c , , (a~)m(ao)n  
m, n 

use of (68a)  immediately gives 

(a), = C c,, ?-(A; pe( T))(A*)"A" 
m. n 

The remaining integrals in (70) are best performed in a polar coordinate basis, with 
the result 

which can be inserted into (70) to get the final result. One can again confirm that (70) 
is consistent with the exact result (e),  = (0'); by using (59). We also note that (68b) 
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is less immediately applicable to operators of normal-ordered form than (6812). Alterna- 
tively, if 0 is a function of the number operator Go = aha,, of the form 

@=I d,(a;a,,)' 
A 

(686) immediately yields the result 

( @ ) B = c  d k  nApB,nn(T)  
k n  

(72) 

(73) 

which has been used by Lachs (1965). 
Even in this case, (68a )  can be profitably used and we conclude this section by 

demonstrating some of the statistical relations of great practical usefulness in such 
fields as quantum optics (Saleh 1978). We now make use of the relation 

which follows from inserting complete sets of number states on both sides of the 
operator (adan) ,  in the matrix element, and  making use of (2). We see that the matrix 
elements in (74) are simply the kth moments of a Poisson distribution with mean ]AI2, 
which are just polynomials of order k in IAl'. A combination of (68a) ,  (71) and (74) 
then leads to an easy evaluation of (a), for operators 0 of the form of (72). For 
example, it is then trivial to prove the relation 

(75) 

from which the moments ( ( n * o ) k ) B  may readily be found by iteration. 
For many purposes it is of greater interest to deal directly with the so-called 

cumulants (or semi-invariants), rather than with the moments. These are well known 
in probability theory where they are defined as follows. Taking the number operator 
n*o as an example, just as the operator exp(n*,t) generates the moments, as 

( n ^ ~ ( n * ~ -  1 ) .  . . ( 6 0 - k +  l ) )R  = k!(eP" - l)-'L;[-(eP" - 1)1B(2] 

so the logarithm of this expression is used as the generating function which defines 
the cumulants, M , ,  

t" 
,,=, n !  In Tr[p,(T) exp(n*,t)] = c --M,(B; T ) .  (77) 

A comparison of (76) and  (77) shows that the first few cumulants are given as 

M ,  = m ,  

M , =  m,-4m3m, -3m:+12m2mf-6m;. 

M , = m 2 - m f  M ,  = m3 - 3 m? m, + 2 m: 
(78) 

The cumulants are particularly easy to evaluate either in the case of zero displacement 
( B  = 0) or zero temperature ( T  = 0).  

In the first place, when B = 0 ,  it is trivial to see from (77) that the cumulants are 
given by 
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In  terms of the pure thermal ( B  = 0) mean n7 of (67) ,  we thus find the usual cumulants 
of the Planck distribution, the first few of which are given by 

M,(O; T )  = n7 M*(O; T)=n, (n ,+I)  M3(0;  T ) = n 7 ( n 7 + 1 ) ( 2 n 7 + l )  

M4(O; T )  = n 7 ( n T +  1 ) ( 6 n $ + 6 n 7 +  1). 

Similarly, when T = 0, we find 

(80) 

In Tr[pB(0) exp(n^,t)] = ln[,(B)e~p(n^,t)/B)~] = /Bl'(e' - 1) (81) 

where the last equality in (81) follows rather easily by making use of (74). A comparison 
of (77)  and (81) then shows that in this case the cumulants are all identical: 

(82) 

which is the result expected for a Poisson distribution with mean number n, of coherent 
photons. 

The general case of (77)  can also be evaluated by making use of (686)  to give 

M,,(B; 0 )  = IB/*= n B  

Use of ( 5 8 ) ,  together with another of the generating functions for the Laguerre 
polynomials (Gradshteyn and  Ryzhik 1965) 

(84) 

readily yields the result 

1 - 1 ) .  ( 8 5 )  
e '  

InTr(pB(T) exp(n^,t))=-In(l+n,-n, e')+- 

By comparing (77) and ( 8 5 ) ,  we can now readily evaluate the cumulants M,,(B; T ) .  
A further comparison with (79) then gives the important result 

We note also that the limiting forms of (79) and (82) follow directly from (86) by 
making use of the relation 

where P, , (x)  is a polynomial in x of order n and where (87) follows simply from (79) .  
The cumulants M,,(B; T )  are then easily obtained from (791, (80) and  (86) and the 
moments m,,(B; T )  may then also be obtained by inverting the relations of (78). We 
quote the results for the first few cumulants: 

MI( B ;  T )  = n, + n7 M,( B ;  T )  = n, + nT( ~7 + 1) + 2nRn7- 

M,(B; T)=nB+M,(O; T ) + 6 n , n , ( n . + l )  (88) 

M 4 ( B ;  T)=nB+M,(O; T)+n,nT(24n:+36nT+ 14). 
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3.3. Momentum-position uncertainty relations 

By inverting (18), (21) and  (28) it is easy to express the position and momentum 
operators in the form 

G = ( f w - 1  112 ) [ ( P  - ~)aL:,o, + ( P *  - v*)aA;peh + 2  Re AI 

p̂  = (iw)1’2[i(F + v)aL;peA - i ( p * +  Y*)aA;peA + 2  Im A]. 
(89) 

Making use of this representation, together with (37), (39) and (40), one easily shows 
that the density matrix p A ; p e A  describes a mixed state localised around the phase space 
point: 

(9) E (4)A;pOA = ( 2 / u ) ” 2  Re A (90) 
and with the following uncertainties: 

( P ) =  ( P ) A ; ~ B A  = ( 2 ~ ) ” ~  Im A 

( A q ) ’ =  a,, = ( ( q - ( q ) ) 2 ) A ; p s A  = ; U - ’  coth(ipw)(cosh p -COS B sinh p )  

( A p ) 2 ~ a p p ~ ( ( p - ( p ) ) 2 ) A ; p e h = f ~  coth( fPw)(coshp+cos  Bs inhp)  (91) 
up, E (q 2 pq * *  + qP)-(P)(q))A;peA * *  = f  coth(fpw) sin e sinh P. 

Of particular interest is the ‘uncertainty determinant’ or ‘variance determinant’, 

(92) 
in terms of the Planck distribution of (67). Equation (92) expresses a generalised 
uncertainty relation for the mixed squeezed coherent states. We note in particular that 
the quantity d e t ( a )  is independent of both the displacement parameter A and the 
squeezing parameters p, 0, A, although the individual variances and  means d o  depend 
on these parameters. This invariance for d e t ( a )  is of course just a reflection of the 
underlying unitary nature of the displacement and squeezing operators, U , ( A )  and 
Uz(p ,  8, A )  respectively. In the particular case when 6 = 0, T,  then aPq = 0, and  

We recognise in (93) the ‘squeezing factor’ exp(*p) in the ratio of uncertainties A p / A q  
which gives the squeezed states their name and note that it is independent of tem- 
perature. We also see that, at zero temperature, the squeezed coherent states with 
0 = 0 or 7~ are minimum uncertainty states. At finite temperatures, we recognise in 
both (92) and (93) the combination of the ‘quantum mechanical uncertainty’, 4, and 
the ‘thermodynamic uncertainty’, nr = (exp pw - l)-’. 

de t ( a ) ,  defined as below and  easily evaluated from (91) 

de t ( a )  = appa,, - aiq = [i coth(fpw)]’ = ($+ nT) ’  

A p A q = $ + n T  Ap/Aq = w e x p ( i p ) .  (93) 

3.4. Completeness relations and a generalised P representation 

We now turn our attention to the central feature of this work, namely the investigation 
of the completeness properties of the squeezed coherent density matrices. In the first 
place it is easy to prove the relation 

which is clearly a generalisation to the mixed states appropriate to non-zero tem- 
peratures of the zero-temperature completeness relation for the pure squeezed coherent 
states 
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which itself follows from the well known resolution of the identity of (14) for the 
Glauber coherent states, by pre- and post-multiplication with the operators U2(p, 8, A )  
and  U:(p, 8, A )  respectively. There are various ways of proving (94a). The most direct 
is perhaps to insert into the left-hand side of (94a) the P representation of (42). 
Making use of the explicit relation of (49), an interchange of the order of integration 
immediately relates the finite-temperature result of (94a) to its zero-temperature limit 
in (946). If  one wishes to avoid the rigorous justification of the interchange of the 
order of integration inherent to the above proof, one may also prove (94a) by taking 
matrix elements of both sides with respect to arbitrary number states o(nl and Im)o. 
Use of the explicit result of (58) for the resulting matrix elements, and  an  evaluation 
of the remaining integral by going to a plane polar coordinate representation, then 
shows that the only non-zero matrix elements are the diagonal ones by first performing 
the angular integration. Finally, one shows that the above matrix elements are precisely 
equal to a,,,,, by using the relation 

5 , ' dxe ' l " (Ax)=( l -A)" .  (95) 

The relation (94a) is important because it shows that the mixed coherent basis PA; ,eh(  T )  
for arbitrary fixed values of the temperature T and the squeezing parameters p, 0, A 
and for all A E @, is complete in the sense that an  arbitrary ket Ik) may be written as 

where we have made use of (39) and (40). 
We also wish to investigate to what extent an  arbitrary operator 0 may be expanded 

in terms of the coherent density matrices as a generalisation to finite temperatures of 
the P representation. If such an expansion exists, we write it as 

in terms of the mixed squeezed coherent states, or as 

in terms of the mixed Glauber coherent states. In  the limit as T+O, (976) becomes 
the usual P representation 

which we have discussed previously. 
In order to proceed, it is very useful to prove a theorem concerning the corresponding 

generalised Q representation. The usual (zero-temperature) Q representation of an  
arbitrary operator is just its diagonal matrix elements between Glauber coherent states, 
Q(A;  0) = o(AIO(A)o. Their finite-temperature analogues are obviously just the thermo- 
dynamic averages of (37) ,  which we now write in the equivalent form: 

QT(A, P 8 A ;  0 )  E Tr[p~;po,( TI@]  Qj-(A; 0 )  Tr[pA( T ) @ ] .  (98) 
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The theorem that we now prove is that the set S, of operators which are uniquely 
specified by their generalised Q representation of (98), considered as a function of A 
(for all A E C)  and for fixed and arbitrary temperature and squeezing parameters, is 
identical to the set Sz of operators admitting the generalised P representation of 
(97a, b ) .  The proof is very similar to the analogous zero-temperature case discussed 
by Klauder and Skagerstam (1985), and which is itself based on earlier work of Simon 
(1980). We therefore only sketch the proof below, making no pretence at full rigour. 
Purely for ease of notation we consider only the case of zero squeezing, although the 
proof is identical when squeezing is also present. 

Let us first suppose the existence of some set Sl, of non-zero operators @ for 
which &(A;  @ ) = O  for all A E C .  Clearly @ E  SI .  Hence we trivially have for all 
functions PT(A;  0 )  

But, by writing an operator 0 ,  E S, in the form of (97b), and by using (98), we see that 

Tr(O,Oz) = F P T ( A ;  O I ) Q T ( A ;  0J. 

A comparison of (99) and  (100) shows that Tr(O:@) = O  for all @ Y E  S 2 ,  and hence for 
all 0 ,  E S2, when @ E  Si.  Now we say that two operators 0 ,  and O2 are orthogonal if 
Tr(OIO2) = 0. Hence the set S2 has a non-trivial orthogonal complement Si when a 
non-zero @ exists for which Q,(A; 0 )  = O .  In other words, if @ E  S;  then (PE S:.  
Conversely, if (PE St, then Tr(O;@) = O  for all 0 ,  E S 2 .  But, since for all integrable 
functions f ( A )  we have a trace-class operator 0 = j d’Af(A)p,( T )  belonging to S2, 
then (100) shows that this implies that the integral 5 d2Af(A)QT(A;  @) vanishes for 
all integrable f (A) .  In turn, this implies that QT(A;  @ )  = 0; and hence @ E S; implies 
that (DE S;. We have thus shown the equivalence Si = Si .  For the case of a d -  
dimensional Hilbert space, with d finite, the desired result now follows immediately, 
since as a linear vector space the space of all d x d matrices is just V = S,O S; for 
any S , c  V. Our result above then shows that an  arbitrary operator 8, i.e. an arbitrary 
d x d matrix, has a unique decomposition 0 = 0 ,  i 0, where 0,  E S, and 0, E S’, , 
which proves our theorem. Finally, as discussed by Klauder and Skagerstam (1985), 
infinite-dimensional Hilbert spaces may be similarly treated provided attention is 
restricted to the space S2 of Hilbert-Schmidt operators admitting a generalised P 
representation, namely those satisfying (97b) and which further satisfy the Hilbert- 
Schmidt criterion 

An immediate corollary of the above theorem is that a general Hilbert-Schmidt 
operator may be represented by a generalised P representation whenever the set Sl, is 
empty, namely whenever their generalised Q representatives suffice to determine all 
operators. Furthermore, since a completely general operator can always be constructed 
as the limit of a sequence of Hilbert-Schmidt operators, we can in this case completely 
generalise to finite temperatures the results of Klauder et aI (1965) to  which we have 
previously alluded. As a second theorem we now prove by an  extension of the method 
used by Klauder (1964) that, just as in the zero-temperature case, an  operator 0 is 
indeed uniquely determined by its generalised Q representation for fixed and  arbitrary 
T (and p, 0, A ) ,  considered as a function of A, for all A E C. In other words we prove 
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now that Si is empty. Again, for the sake of clarity we present the proof only for the 
case of zero squeezing. 

Both as a preliminary for the proof and for later purposes it is useful to introduce 
the Weyl representation of an arbitrary operator. This follows most easily from the 
fundamental relation between the displacement or  Weyl operators, U , ( A ) ,  of (20) 

(102a) 

which was given by Moyal (1949), and which is rather easily proven using the group 
relation (45) and the overlap relation (48) between coherent states. Making use of the 
completeness relation (14) for coherent states, we may write (102a) in the form 

(102b) 

from which immediately follows the Weyl representation of an arbitrary operator 

0 = - Tr[ U : ( A ) O ]  U , ( A )  I d: 
(103a) 

by writing 0 as a non-diagonal decomposition in terms of coherent states, which by 
completeness may always be done. It is convenient for later purposes to make a trivial 
change of variables to write (103a) in the form 

@ ( K ;  0) = T Tr[ U;(-$K)O]. (103 b )  

To return to the proof of our second theorem, let us now assume that 0, and 0, 
are two operators with the same generalised Q representation. Their difference @ =  
0, - 0, then belongs to S’, , and hence Q T ( A ;  @) = 0 for all A E @. By writing @ in the 
Weyl form of (103b), we have from the definition of (98), 

We now make use of the zero-temperature version of (100) to write 

The Q representatives of the Weyl operators are easily evaluated using (22) and 
as 

48 1 

,(BI U,(-fiK)IB)o = exp(-iB. K - IKI2/8)  (106) 

(107) 

where we have introduced the convenient scalar product notation 
B .  K = $ ( B K * +  B * K )  = Re B .  Re K + Im B .  Im K. 

Use of (49) and (106) in (105) and (104) then readily gives 

Q T ( A ;  0) = - @ ( K ;  0) exp( -blKI’coth(fPw)) exp(-iB. K )  I ( E 2  

valid for arbitrary 0. If we now restrict ourselves to those @E S’, as above for which 
Q T ( A ;  @) = 0 for all A E C, we then have by the standard theorem of Fourier analysis 
that @( K ;  @) = 0 almost everywhere, since the remaining exponential term never 
vanishes. Hence @ = 0, the null operator, and the proof is completed. 
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To recapitulate, we have thus proven from a combination of our two theorems the 
fundamental result that all operators in the trace class either directly have the 
generalised P representation of (97) or may be regarded as the limit of a sequence of 
such operators. Since our theorems involved existence proofs only, we now proceed 
to consider the construction of the generalised P representatives and  various relations 
involving them. As a first step, we consider generalising the Mehta (1967) construction 
of (17) to our finite-temperature case. By taking the matrix elements of (97a)  between 
the states o( -B;  peAl and IB; pBA)a of (33), we find 

where we have made use of (33) and (38) to eliminate the squeezing parameters in 
the matrix element in the right-hand side of (109). We may now use (47) to show that 
(109) may be written as 

o ( - ~ ;  peAl@lB; pe,i)o exp[(l  + e - p w ) l ~ l ' ]  

xexp[ ( l  -e-P")(-IA12+A*B-AB*)]. (110) 

Since the factor (A*B -AB*)  in the exponential term in the integrand of (1 10) is pure 
imaginary, we see that the integral is just a double Fourier transform. If the left-hand 
side of the equation is square integrable (which is certainly not always the case), we 
may perform the usual Fourier inversion. In such cases the inversion is readily 
performed explicitly to give 

P,(A, p8A; @ ) = ( l - e - @ )  exp[(l  -e-p'")1A12] --o(-B; peA/@lB; p13A)~ 

(111) 
More generally we may also interpret the generalised P representative as a tempered 
distribution in those cases where the left-hand side of (110) is limited to polynomial 
growth at infinity in both Re B and Im B. Most generally, there will also be cases 
where, for example, the growth is exponential and  is hence not limited by any 
polynomial. The Fourier inversion can still be dealt with in the framework of distribu- 
tion theory. As we have already mentioned, one commonly used technique would, in 
our case, now enable us to express the generalised P representative as the limit of a 
suitable sequence of square-integrable functions, analogously to the work of Klauder 
et a1 (1965) in the zero-temperature or pure-state case. Equation (1 11) clearly reduces 
in the case of zero squeezing and in the limit of zero temperature to the expression 
(17) of Mehta (1967). 

i d: 

x exp[ (1 + e-P")IB12] exp[ (1 -e-@")( AB* - A*B)]. 

3.5. Relations between the generalised P and Q representatives 

We turn our attention now to various relations that exist between the generalised P 
and Q representatives. They are extensions of other similar such relations for the 
zero-temperature case (Hillery et a1 1984, Balazs and Jennings 1984). Firstly, using 
(97a) and (98), we see that 

d2A 
QT,(B,P@A; @ ) =  1 ---PT(A,p@A; @) Tr[p,(T)p,(T')I (112) 

7r 
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where have used (38) and the unitarity of the squeezing operators U2(p, 8, A )  to 
eliminate the squeezing parameters from the trace term in the integrand. This trace 
may now be evaluated by making use of (68a) to write 

d2T 
TdpA(  T ) p B (  T‘)l = 1 P A (  T))Q(r;  P B (  T’)) .  (113) 

77 

By making use of (49) and the relation 

Q(A; p B ( T ) )  = (1 -e-pw) exp[-(1 -e-@”)lA-BI’] (114) 

which follows immediately from (47), the integration in (113) may be performed 
explicitly to give 

(115) 

Insertion of (1 15) into (1 12) then gives a rather general relation between the generalised 
P and Q representatives at different temperatures for a given operator. 

Before proceeding further we wish to make a few comments concerning (115). In 
the first place, the zero-temperature limit T = 0 = T’ correctly reduces to the form 

Tr[IA)o o(AIB)o o(BIl= Io(AIB)o12 = exp(-IA - BIZ) (116) 

which expresses the overlap between coherent states as given in (48). Secondly, using 
(39) and (40) we may write 

Of the terms in (1 17) we have that p, (  T )  is the probability to find the system described 
by the density matrix p A ( T )  in the state )m)A,  and secondly that the term 
Z , p , (  T’)lA(mln)B12 is the probability to find the system described by the density matrix 
pB( T’) in the state I m ) A .  Hence the trace Tr[pA(  T ) p B (  T’)] is simply the total joint 
probability to find the two separate systems described by density operators p A (  T )  and 
p B ( T ’ )  in the same (but otherwise arbitrary) pure state. It is easy to see from the 
explicit form of (1 15) that this joint probability never exceeds one and only equals 
unity in the case A = B at zero temperature, in which case the two systems are clearly 
definitely in the same pure state. In the case A = B, the right-hand side of (1 17) reduces 
to 

where the sum is trivially performed using the explicit form of p n ( T )  from (40), in 
total agreement with (115). We note in passing that the same argument as above can 
be readily generalised to two arbitrary mixed states, where it leads to the interpretation 
of Tr(p,p,) as the total joint probability to find the two systems described separately 
by density operators p,  and p 2 ,  in the same (arbitrary) pure state. 

Equations (112) and (115) may be written in two other equivalent forms. In the 
first place we may exploit the Gaussian form of (1 15) to make use of the general relation 

k > O  (1  19) 
d2A 1 d2 
7 f ( A * ,  A)k exp(-klA - BIZ) = exp( - -)f( B*, B )  k aB*aB 
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which holds for an arbitrary functionf(A*, A )  = f ( A )  of the complex variable A, which 
permits a Taylor expansion. Equation (1  19) is readily proven by first shifting variables 
to A = E + k-"' z; then Taylor expanding the function .f about the complex point E ,  
and finally using the trivial integral, 

which is readily proven in polar coordinate representation. In this way we find 

In the second place, we recognise that the integral in (112) with the form of the trace 
from (115) is a simple convolution. Again, when P,(A, p8h; 0) is a tempered distribu- 
tion both sides can be Fourier transformed to give 

where our Fourier transform f( K )  of an arbitrary functionf(l3) of complex parameter 
B is defined as 

1123) 

Three particularly important cases of (1  12)  and (1  15) are: ( i )  T' = T, ( i i )  T' = 0 and  
(iii) T = 0. They lead respectively to the results below, where we also give the 
corresponding form of (122): 

QT(B,  pBA; 0 )  = 

& ( K ,  p 8 h ;  0 )  = P,(K, p 6 A ;  0) exp[-alKl'coth($pw)] 

Q ( E ,  p 6 h ;  0 )  = 

(124b) 
@ K ,  p ~ h ;  e)= F T ( ~ ,  p e h ;  0 )  exp[-{IKi2(1 - e  

Q,(B, p 6 A ;  0) = id? (124c) 
& ( K , ~ o A ;  0 )  = P ( K ,  p e h ;  0 )  exp[-{IKI'(l -e-'")-'] 

where the various P and Q functions with no temperature subscript indicate just their 
usual zero-temperature counterparts. 

We may also derive a relation between the finite- and zero-temperature Q representa- 
tives as follows. Using (42) in the definition (981, we find immediately the relation 

Q T ( B ,  p 6 h ;  0) = 

where we have used (49). This may again be solved by convolution to yield 

--P,(A, p6h; 0) tanh($pw) exp[-tanh($w)/A--B;'] 

( 1 2 4 ~ )  
i d: 

d2A 
-P,(A, p 6 A ;  0)(  1 -e-'w) exp[-(l -e-@'")IA - B/'l 

7T 

---(A, p 6 h ;  0)(1 -e-'") exp[ - ( I  -e-@")IA-BI'] 

-Q(A, p 6 h ;  @)(e'" - 1) exp[-(eP" - 1)IA- El2] ( 1 2 5 ~ )  i ":" 
&( K ,  p6h ; 0 )  = o( K ,  p 6 h  ; 0) exp[ - 41 K 1 2 (  - 1 ) - '  1. (1256) 
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More generally, we may use (125b) twice to prove 

It  is perhaps also worth noting that (126) also follows by eliminating P,(K, p8A; 0 )  
between (122) and another version of itself with T' = T". In  a very similar fashion we 
may also eliminate &( K,  p8A; 0 )  from (122) to derive the comparable relation, 

which has the special case, when T'  = 0, 

P(K ,  p8A;  0 )  = P T ( ~ ,  ~ O A ;  0 )  exp[-alKI'(ePu - I ) - ' ]  (128a 

or, equivalently, upon Fourier inversion 

PT(A, p8A ; @)(eP" - 1) exp[ -(eP" - 1)lA - BIZ]. (128b 

It is useful to summarise the various relations between the generalised P and Q 
representatives by making contact again with the Weyl representation introduced 
previously in (1036). In fact, we may also slightly generalise the Weyl representation 
to include squeezing. By obvious insertions of the unitary squeezing operator 
U,(p, 8, A ) ,  we may rewrite (102b) in the analogous form 

5 $ ~ , ( ~ p m )  o ( ~ ;  p o A ~ ~ ( ~ p o , ) l ~ ;  p o A ) o = ~ ~ ;  p @ A ) o o ( ~ ;  p6A1 (129) 

where we have made use of (201, (28) and (30) to show that 

U2(p, 0, A )  Ul(p, A )  = Ul(ApOA) 
(130) 

In the same way that (103a) follows from (1026), we may now show from (129) that 
an arbitrary operator 0 may be written as 

A,,, 3 A eiA cosh(4p) - A* exp[ -i( A + O)] sinh(fp). 

0 = { $ Tr[ U:(A,,, )@I Ul(Ap,A ) ( 1 3 1 4  

which we again write in the equivalent form 

d'K 
+?I(K,P~A;@)uAP, e,A)U1(-4iK)U:(p, 0 , ~ )  

(1316) 
@ ( K , p B A ;  @)= 6'(KpoA; O)...rrTr[U,(-fiK,,,)O] . 

We may now easily take the generalised Q representative of (98) to get 

&(A, p8A; 0 )  = k ( K , p O A ;  0 )  Tr[p,(T)U,(-iiK)] (132) 

where we have made use of (38) and the unitarity of the squeezing operators U,(p, 0, A ) .  
Further evaluation of (132) then proceeds exactly as in the case of zero squeezing 
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which led from (104) to (108). A further comparison with (124a) then gives us the 
two relations 

6 ' ( K ,  p8h; 0 )  exp[-$lKI2 coth($w)] exp(-iB. K )  (133a) 
d2  K 

PT(A,  p8h; 0 )  = 5 6'(K, p 8 h ;  0 )  exp[$lKI*coth($o)] exp(-iB. K )  (1336) 

which may be given also in the equivalent form: 

Q7(A,  p 8 A ;  0 )  = exp 4 coth($w)- ) W ( A ,  p8h;  0 )  
aA* aA 

P7(A, p8h; 0 )  = exp -4 coth($w)- ) W ( A ,  p8h; 0 ) .  
dA*dA 

(134a) 

(1346) 

We note that the generalised P representative may just be regarded as the analytic 
continuation to negative temperatures of the corresponding generalised Q representa- 
tive, namely we have formally that the former is obtained by the replacement T + - T 
in the latter. We emphasise again, however, that this is only valid when the resulting 
generalised P function is integrable and square integrable, so that the above derivations 
are valid, and  so that the resulting operators represented by the right-hand side of 
(97a, b )  are bona fide operators. 

A simple example of the above is provided by the operator p R ( T ' )  which has a 
generalised Q representative, Q7(A;  p B (  T ' ) )  given by (1 15). One immediately sees 
that the corresponding generalised P representative P,(A;  pB(  T ' ) ) ,  obtained by the 
replacement T +  - T in (1 15), is valid only for T s T' .  

Finally we note that if 0 is put into normal-ordered form 

0 = $ , ( U o ,  U ; ) :  (135a) 

where the normal-ordering operator :( ): indicates that in every term all the destruction 
operators a, stand to the right of all the creation operators a, then we have trivially that 

(1356) 

where we have used (24). Furthermore, the two relations (135a,b) are totally equivalent. 
(Note also that a similar analysis may be made for Q( B, p8h ; 0 )  with respect to normal 
ordering in terms of the operators uo,oeA and In this case we have from (119) 
and ( 1 2 5 ~ )  

Q ( B ;  0 )  = o(Bl@IB),=f,(B, B*)  

We note also that if we write 0 in the form of (135a), its generalised Q representative 
may be evaluated directly as 
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where we have inserted a complete set of coherent states. Using (47) and (48), further 
evaluation of (137) is possible and it may be verified that this leads precisely to the 
inverse of (136), as required. 

Similarly, 0 may also be put into antinormal-ordered form 

@='lf,(ao, a:)" (138) 

where the antinormal-ordering operator "( )" indicates that in every term all the 
destruction operators stand to the left of all the creation operators. In this case, if we 
assume that f a (  B, B*) has the expansion 

we may evaluate the P representative P (A;  0) by the Mehta construction of (17). 
Specifically, by inserting a complete set of coherent states, we have 

Insertion of (140) into (17) gives 

=exp(lAI') m.n fm,Am(A*)" 1 $exp(-IB/'+AB*-A*B) 

=fa(A, A*) (141) 
where in the second line of (141) we have integrated by parts. In  this case we also 
have from (119) and (128b) 

which may again be verified directly for 0 of the form of (138). 
It is clear from our earlier discussion that our results should therefore be of 

considerable use in putting arbitrary operators into normal- or antinormal-ordered 
form. In particular, the generalised Q representative QT(A;  0 )  (or QT(A, p 8 h ;  0)) 
may be evaluated both in the limit as T + O', and after the analytic continuation to 
negative temperatures in the limit as T --* 0-, to give both the normal- and  antinormal- 
ordered functionsf, andfa with respect to the operators a, and ah (or u ~ : ~ ~ ~  and 
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3.6. Entropy relations 

At zero temperature, our systems are described by pure states, P A , ~ ~ A  (0) = 
IA; pBh),, o(A; p8h 1, and as consequences of this fact we have that these zero-temperature 
density matrices, generically p(O) ,  satisfy the statements: (i)  that they are projection 
operators, p ' (0 )  = p ( 0 ) ;  (ii) that the trace of their square equals unity, Tr p 2 ( 0 )  = 1; 
and (ii i)  that the associated entropy vanishes, S(0) = -Tr[p(O) In p ( O ) ]  = 0. It is not 
difficult to show that any one of these statements implies the other two. Conversely, 
at finite temperatures the density matrices, generically p (  T ) ,  describe real mixed states, 
and the corresponding statements become: (i)  p'( T) # p(  T ) ;  (ii) O<Tr p2(  T )  < 1; and 
(iii) S (  T )  = -Tr[p( T )  In p (  T ) ]  > 0. Both quantities Tr p'( T )  and the entropy S (  7) 
are independent of the displacement and squeezing parameters {A;  @ A } ,  and depend 
solely on temperature. Both provide a quantitative measure of the state mixing 
described by p ( T ) .  Thus, the smaller is Trp2(T)  or the greater is S ( T ) ,  the more 
mixed is the state or, correspondingly, the less 'information' do we have about the 
basis. Specifically we have from (39) and (40) 

TrpA,peA(T) = E  P ~ ( T )  =tanh(iPw) 2 

n 

s( s( 7; -Tr[pA.pOh( In p A . p B h (  = -c Pn( T ,  In Pn( 
n 

= - l n ( l - e - P " ) + p w ( e P " - l ) - l .  (143) 
For many purposes we are interested in systems with more than one type of oscillator 

(or boson or mode), and it is not difficult to extend our results accordingly. For 
example, suppose that we have two Hilbert spaces XI and X 2  with corresponding 
operators ( a , ,  a:) and ( a 2 ,  a:) which obey the usual canonical commutation relations: 

(144) 
t t  La,,  a J l = o = [ a t 9  ' J ]  [a,,  4 1  = 8, i , j=  1,2.  

Let p1  and p2 be density matrices in the respective spaces XI and X 2 .  Then, if p I O p 2  
represents the corresponding density matrix for the mixed state of the joint system in 
X10X2, it is a simple matter to show (Fano 1957, Segal 1960, Wehrl 1978) the 
absolutely fundamental property of the additivity of the entropy 

(145) 
The relation (145) is often of considerable practical use. For example, i t  may be 

used together with the simply proven fact that unitary transformations do not change 
the entropy to handle systems with general quadratic Hamiltonians. As an illustration, 
we consider the Hamiltonian 

(146) 
We have explained elsewhere (Bishop and Vourdas 1987) that, in the case where 
a( w 1  + w2)2  - 1 ~ 1 ~  > 0, there is a unitary transformation generated by an operator V, where 

S{PI OP2) = S { P J  + Sb21. 

H = w l U : U l  +w2U:U2+ KU:U:+K*UlU2. 

~ = e x p ( - f p  e-iea:a:+tp eieala,) 
(147) 

which transforms (146) into the decoupled form: 

H + A = V ~ H V = R ~ U : U ,  + ~ , a ~ a ~ + c o n s t a n t  

a, = Sgn( 01 + U,)[$(  01 + W 2 ) 2  - IK 1 2 ] 1 ' 2 -  (-I)";( W1 - 0 2 )  n = 1,2.  (148) 
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Furthermore the spectrum of the transformed Hamiltonian l? is positive-definite if 
w , + w z > O a n d $ ( w , + w , ) ’ - ~ ~ ~ 2 > ~ ( ~ l   or, equivalently,ifw,>Oand w , w z >  ( ~ 1 ’ .  
I n  this case, the entropy of the system with Hamiltonian H at thermodynamic equili- 
brium at temperature T, and hence described by the density matrix p = e-’)’ /Tr(e-P”),  
is the same as for the corresponding system with Hamiltonian l?. Using (143) and 
(145) we see immediately that this entropy is just S( T ;  Cl,)  + S( T ;  Cl’), where S( T ;  0) 

is defined in (143). For completeness we also note that in the case a ( w l - w 2 ) ’ >  
a( w ,  + w 2 ) l  - I K  1’ > 0, although the Hamiltonians H and l? are unitarily equivalent, the 
energy spectrum is not bounded from below, and hence the density matrix cannot be 
defined since the operator e-PH does not belong to the trace class. Finally, we have 
explained elsewhere (Bishop and Vourdas 1987) that in the case $ ( U ,  +U?) ’  < / K I z ,  the 
Hamiltonian H is unitarily equivalent to another which may be employed to describe 
the damped harmonic oscillator. The spectrum now becomes complex (if  one is 
prepared to admit non-normalisable eigenfunctionsj and it is not possible to define 
an  entropy, at least not in the conventional sense. 

Finally we note that, even in the case of a single mode, it may sometimes be 
convenient to work with more than a single squeezed coherent state IA; pBA)o at a 
time, or correspondingly with more than a single associated Hamiltonian HA,pBA of 
(31) or  density matrix pA,,OA(T) of (36). In such cases the following points may be 
useful. If we consider a subset pA,,,OA( T ) ,  i = 1 , .  . . , N,  of the density matrices of (36), 
then the operator p’( T )  = C, A,p,,,,,, ( T )  is also a density matrix provided the {A,}  are 
a set of real positive integers that sum to unity, C, A ,  = 1. It may then be shown that 
the entropy 5 = ,${p’} associated with this density matrix obeys the inequalities 

S S  5s S -c A ,  In A ,  (149) 

where S is the entropy of (143). The left inequality in (149) is just the well known 
property of the concavity of the entropy (Segal 1960, Wehrl 1978) expressed in our 
particular framework, while the right inequality has also been studied by Lanford and 
Robinson (1968). 

4. Conclusions 

We have attempted to show in this paper to what extent the mixed squeezed coherent 
states appropriate to a displaced and squeezed harmonic oscillator in thermodynamic 
equilibrium at some finite temperature can be used as a generalised basis in Hilbert 
space. In  particular we have demonstrated in the first place how the associated 
thermodynamic density operator may be used to expand arbitrary ket states by providing 
an  appropriate decomposition of the identity operator. Secondly, and much more 
importantly, we have investigated the possibility of expanding an  arbitrary operator 
in the Hilbert space in terms of these density operators. We have explicitly demonstrated 
how this latter aspect may be viewed as a rather natural generalisation to finite 
temperatures of the well known P representation of quantum mechanical operators 
as integrals clver projection operators onto the pure Glauber coherent state vectors in 
the space. 

We have explicitly investigated the question of the existence of the generalised P 
representation and have shown how the situation is quite similar to the usual pure-state 
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or zero-temperature case. Thus, we have shown how the generalised P representative 
for an arbitrary trace-class operator 0 in the space may be straightforwardly obtained 
in a variety of ways, but where each of these ultimately relies on the existence of the 
two-dimensional Fourier transform of some appropriate associated quantity. Certainly 
the class of operators for which such transforms exist as smooth functions is rather 
large. On the other hand, there exist other quite ordinary and respectable operators 
for which the respective Fourier integral only finds meaning within the framework of 
the theory of generalised functions or distributions. This typically arises due to the 
behaviour at infinity of the integrand. In some cases where the behaviour at infinity 
is limited to polynomial growth, the associated generalised P representative can be 
interpreted as a tempered distribution. In other cases, typically where there is exponen- 
tial growth at infinity, the generalised P representative still exists as a distribution (e.g. 
in the sequential sense). In such cases, because the distribution is no  longer tempered, 
its practical usefulness will be accordingly curtailed. 

In these latter cases, one may either take the view that the generalised P representa- 
tive does not exist or, as we have shown, even here one may define the generalised P 
representative as the limit of an  infinite sequence of such representatives. 

It is also worth pointing out that, while a given operator may have a generalised 
P representative only in the Schwartz sense in the case of mixed ordinary (unsqueezed) 
coherent states, its generalised P representative may be quite well behaved in terms 
of the mixed squeezed coherent states. These extra squeezing degrees of freedom may 
in such cases be of real practical use. 

We have also shown how our results may be related to the Glauber-Lachs formalism 
in quantum optics for mixtures of coherent and incoherent radiation. In particular we 
have been able to give some rather general expressions for the cumulants of the 
associated photon distribution functions for such mixtures. These expressions are of 
practical use in evaluating the various photon correlation effects observed in experi- 
ments of the Hanbury Brown and Twiss (1956) type. 

The pure coherent states are well known to be minimum-uncertainty states in that 
they realise the Heisenberg position-momentum uncertainty relation ApAq 5 as an 
equality. We have shown here how the corresponding mixed coherent states obey a 
finite-temperature generalisation of this relation which is formulated in terms of the 
uncertainty determinant or variance determinant of (92). The corresponding expression 
involves the corresponding quantum mechanical minimum uncertainty in the zero- 
temperature limit, but at finite temperatures also contains an extra thermodynamic 
uncertainty which is given in terms of the Planck distribution for the average number 
of thermal photons. It is of course just this additional term which is ultimately 
responsible for the thermodynamic entropy which we have also discussed. 

In this latter context we have illustrated how the entropy may be evaluated in the 
particular case of two modes coupled through a quadratic Hamiltonian. More gen- 
erally, although most of our results have been given for a single mode (i.e. a single 
one-dimensional harmonic oscillator), the generalisation to systems having more than 
one degree of freedom is straightforward in principle. 
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